Q.P. Code: 20HS0836				R20	
	Re	g. No:			
		the active sets is a least it were to choose 6 minibers from 1 to 15 to that A.			
		SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTT (AUTONOMOUS) MCA I Year I Semester Regular & Supplementary Examinations May-202 DISCRETE MATHEMATICS	TUR 2		
	Ti	me: 3 hours	Max. N	Iarks: 60	
		(Answer all Five Units $5 \times 12 = 60$ Marks)			
		UNIT-I			
1	a	Define converse, inverse contra positive with an example.	L3	6M	
	b	Prove that $(P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$ is a contradiction.	L3	6M	
		OR			
2	a	Verify the validity of the following arguments: Lions are dangerous animals, there are lions. Therefore, there are dangerous animals.	L4	6M	
	b	Show that $(\exists x) M(x)$ follows logically from the premises	L1	6M	
		$(\forall x)(H(x) \rightarrow M(x)) \text{ and } (\exists x)H(x).$			
		UNIT-II			
3	a	Define an equivalence relation? If R be a relation in the set of integers Z defined by	L1	6M	
		$R = \{(x, y) : x \in Z, y \in Z, (x - y) \text{ is divisible by 6}\}$. Then prove that R is an equivalence relation.			
	b	Draw the Hasse diagram representing the positive divisors of 36.	L1	6M	
		OR			
4	a	Define abelian group, homomorphism and isomorphism.	L1	6M	
	b	For a group G, prove that the function $f: G \to G$ defined by $f(a) = a^{-1}$ is an	L4	6M	
		isomorphism if and only if G is abelian.		v	
		UNIT-III			
5	a	A group of 8 scientists is composed of 5 psychologists and 3 sociologists.	L1	6M	
		i) In how many ways can a committee of 5 be formed?			
		ii) In how many ways can a committee of 5 be formed that has 3 psychologists and			
		2 sociologists?			
	b	The question paper of mathematics contains two questions divided into two groups	L1	6M	
		of 5 questions each. In how many ways can an examine answer six questions taking			
		at least two questions from each group.			

Q.P. Code: 20HS0836

OR

R20

6	a	If $x > 2$, $y > 0$, $z > 0$, then find the number of solutions of $x + y + z + w = 21$.	L1	6M
	b	Show that there must be at least 90 ways to choose 6 numbers from 1 to 15 so that	L1	6M
		all the choices have the same month.		
		UNIT-IV		
7	a	Find the generating function of $n^2 - 2$.	L6	6M
	b	Find the coefficient of x^n in the function $(x^2 + x^3 + x^4 +)^4$.	L6	6M
		OR		
8	Se	blve the recurrence relation $a_n + 4a_{n-1} + 4a_{n-2} = 8$ for $n \ge 2$, and $a_0 = 1, a_1 = 2$.	L6	12M
9	a	How many edges does a graph have if it has vertices of degree 4, 3, 3, 2, 2? Draw	L1	6M
		such a graph.		
	b	If G is non-directed graph with 12 edges, suppose that G has 6 vertices of degree 3	L2	6M
		and the rest have degree less than 3. Determine the minimum number of vertices.		
		OR		
10	a	Show that in any graph the number of odd degree vertices is even.	L4	6M
	b	Write difference between Hamiltonian graphs and Euler graphs.	L1	6M

*** END ***